Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Multiscale transparent electrode architecture for efficient light management and carrier collection in solar cells.

Identifieur interne : 000B93 ( Main/Exploration ); précédent : 000B92; suivant : 000B94

Multiscale transparent electrode architecture for efficient light management and carrier collection in solar cells.

Auteurs : RBID : pubmed:22332666

English descriptors

Abstract

The challenge for all photovoltaic technologies is to maximize light absorption, to convert photons with minimal losses into electric charges, and to efficiently extract them to the electrical circuit. For thin-film solar cells, all these tasks rely heavily on the transparent front electrode. Here we present a multiscale electrode architecture that allows us to achieve efficiencies as high as 14.1% with a thin-film silicon tandem solar cell employing only 3 μm of silicon. Our approach combines the versatility of nanoimprint lithography, the unusually high carrier mobility of hydrogenated indium oxide (over 100 cm(2)/V/s), and the unequaled light-scattering properties of self-textured zinc oxide. A multiscale texture provides light trapping over a broad wavelength range while ensuring an optimum morphology for the growth of high-quality silicon layers. A conductive bilayer stack guarantees carrier extraction while minimizing parasitic absorption losses. The tunability accessible through such multiscale electrode architecture offers unprecedented possibilities to address the trade-off between cell optical and electrical performance.

DOI: 10.1021/nl203909u
PubMed: 22332666

Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Multiscale transparent electrode architecture for efficient light management and carrier collection in solar cells.</title>
<author>
<name sortKey="Boccard, Mathieu" uniqKey="Boccard M">Mathieu Boccard</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Microengineering (IMT), Photovoltaics and Thin Film Electronics Laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue A.-L. Breguet 2, CH-2000 Neuchâtel, Switzerland. mathieu.boccard@epfl.ch</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Institute of Microengineering (IMT), Photovoltaics and Thin Film Electronics Laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue A.-L. Breguet 2, CH-2000 Neuchâtel</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Battaglia, Corsin" uniqKey="Battaglia C">Corsin Battaglia</name>
</author>
<author>
<name sortKey="H Nni, Simon" uniqKey="H Nni S">Simon Hänni</name>
</author>
<author>
<name sortKey="S Derstr M, Karin" uniqKey="S Derstr M K">Karin Söderström</name>
</author>
<author>
<name sortKey="Escarre, Jordi" uniqKey="Escarre J">Jordi Escarré</name>
</author>
<author>
<name sortKey="Nicolay, Sylvain" uniqKey="Nicolay S">Sylvain Nicolay</name>
</author>
<author>
<name sortKey="Meillaud, Fanny" uniqKey="Meillaud F">Fanny Meillaud</name>
</author>
<author>
<name sortKey="Despeisse, Matthieu" uniqKey="Despeisse M">Matthieu Despeisse</name>
</author>
<author>
<name sortKey="Ballif, Christophe" uniqKey="Ballif C">Christophe Ballif</name>
</author>
</titleStmt>
<publicationStmt>
<date when="2012">2012</date>
<idno type="doi">10.1021/nl203909u</idno>
<idno type="RBID">pubmed:22332666</idno>
<idno type="pmid">22332666</idno>
<idno type="wicri:Area/Main/Corpus">000E94</idno>
<idno type="wicri:Area/Main/Curation">000E94</idno>
<idno type="wicri:Area/Main/Exploration">000B93</idno>
</publicationStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Electric Power Supplies</term>
<term>Electrodes</term>
<term>Equipment Design</term>
<term>Equipment Failure Analysis</term>
<term>Light</term>
<term>Nanostructures (chemistry)</term>
<term>Nanostructures (ultrastructure)</term>
<term>Nanotechnology (instrumentation)</term>
<term>Particle Size</term>
<term>Refractometry</term>
<term>Scattering, Radiation</term>
<term>Solar Energy</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Nanostructures</term>
</keywords>
<keywords scheme="MESH" qualifier="instrumentation" xml:lang="en">
<term>Nanotechnology</term>
</keywords>
<keywords scheme="MESH" qualifier="ultrastructure" xml:lang="en">
<term>Nanostructures</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Electric Power Supplies</term>
<term>Electrodes</term>
<term>Equipment Design</term>
<term>Equipment Failure Analysis</term>
<term>Light</term>
<term>Particle Size</term>
<term>Refractometry</term>
<term>Scattering, Radiation</term>
<term>Solar Energy</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The challenge for all photovoltaic technologies is to maximize light absorption, to convert photons with minimal losses into electric charges, and to efficiently extract them to the electrical circuit. For thin-film solar cells, all these tasks rely heavily on the transparent front electrode. Here we present a multiscale electrode architecture that allows us to achieve efficiencies as high as 14.1% with a thin-film silicon tandem solar cell employing only 3 μm of silicon. Our approach combines the versatility of nanoimprint lithography, the unusually high carrier mobility of hydrogenated indium oxide (over 100 cm(2)/V/s), and the unequaled light-scattering properties of self-textured zinc oxide. A multiscale texture provides light trapping over a broad wavelength range while ensuring an optimum morphology for the growth of high-quality silicon layers. A conductive bilayer stack guarantees carrier extraction while minimizing parasitic absorption losses. The tunability accessible through such multiscale electrode architecture offers unprecedented possibilities to address the trade-off between cell optical and electrical performance.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">22332666</PMID>
<DateCreated>
<Year>2012</Year>
<Month>03</Month>
<Day>14</Day>
</DateCreated>
<DateCompleted>
<Year>2012</Year>
<Month>07</Month>
<Day>03</Day>
</DateCompleted>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1530-6992</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>12</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2012</Year>
<Month>Mar</Month>
<Day>14</Day>
</PubDate>
</JournalIssue>
<Title>Nano letters</Title>
<ISOAbbreviation>Nano Lett.</ISOAbbreviation>
</Journal>
<ArticleTitle>Multiscale transparent electrode architecture for efficient light management and carrier collection in solar cells.</ArticleTitle>
<Pagination>
<MedlinePgn>1344-8</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1021/nl203909u</ELocationID>
<Abstract>
<AbstractText>The challenge for all photovoltaic technologies is to maximize light absorption, to convert photons with minimal losses into electric charges, and to efficiently extract them to the electrical circuit. For thin-film solar cells, all these tasks rely heavily on the transparent front electrode. Here we present a multiscale electrode architecture that allows us to achieve efficiencies as high as 14.1% with a thin-film silicon tandem solar cell employing only 3 μm of silicon. Our approach combines the versatility of nanoimprint lithography, the unusually high carrier mobility of hydrogenated indium oxide (over 100 cm(2)/V/s), and the unequaled light-scattering properties of self-textured zinc oxide. A multiscale texture provides light trapping over a broad wavelength range while ensuring an optimum morphology for the growth of high-quality silicon layers. A conductive bilayer stack guarantees carrier extraction while minimizing parasitic absorption losses. The tunability accessible through such multiscale electrode architecture offers unprecedented possibilities to address the trade-off between cell optical and electrical performance.</AbstractText>
<CopyrightInformation>© 2012 American Chemical Society</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Boccard</LastName>
<ForeName>Mathieu</ForeName>
<Initials>M</Initials>
<Affiliation>Institute of Microengineering (IMT), Photovoltaics and Thin Film Electronics Laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue A.-L. Breguet 2, CH-2000 Neuchâtel, Switzerland. mathieu.boccard@epfl.ch</Affiliation>
</Author>
<Author ValidYN="Y">
<LastName>Battaglia</LastName>
<ForeName>Corsin</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hänni</LastName>
<ForeName>Simon</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Söderström</LastName>
<ForeName>Karin</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Escarré</LastName>
<ForeName>Jordi</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Nicolay</LastName>
<ForeName>Sylvain</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Meillaud</LastName>
<ForeName>Fanny</ForeName>
<Initials>F</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Despeisse</LastName>
<ForeName>Matthieu</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ballif</LastName>
<ForeName>Christophe</ForeName>
<Initials>C</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType>Journal Article</PublicationType>
<PublicationType>Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>02</Month>
<Day>16</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Nano Lett</MedlineTA>
<NlmUniqueID>101088070</NlmUniqueID>
<ISSNLinking>1530-6984</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="Y">Electric Power Supplies</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y">Electrodes</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Equipment Design</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Equipment Failure Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Light</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Nanostructures</DescriptorName>
<QualifierName MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName MajorTopicYN="Y">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Nanotechnology</DescriptorName>
<QualifierName MajorTopicYN="Y">instrumentation</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Particle Size</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Refractometry</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Scattering, Radiation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y">Solar Energy</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="aheadofprint">
<Year>2012</Year>
<Month>2</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>2</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>2</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>7</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="doi">10.1021/nl203909u</ArticleId>
<ArticleId IdType="pubmed">22332666</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV2/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B93 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000B93 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV2
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:22332666
   |texte=   Multiscale transparent electrode architecture for efficient light management and carrier collection in solar cells.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:22332666" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a IndiumV2 

Wicri

This area was generated with Dilib version V0.5.76.
Data generation: Tue May 20 07:24:43 2014. Site generation: Thu Mar 7 11:12:53 2024